
AWS Cost Optimization Checklist
30+ actionable items to reduce your AWS bill by 15-60%

This checklist covers the highest-impact AWS cost optimizations based on $250M+ in

analyzed cloud spend. Each item includes typical savings and how to identify the

opportunity in your environment.

Quick Wins: Start Here

These optimizations take less than an hour and deliver immediate savings.

Optimization Typical Savings Effort

GP2 → GP3 migration ~20% Low

io1/io2 → GP3 migration ~60-87% Low

S3 Intelligent-Tiering Up to 65% Low

DynamoDB Standard-IA ~60% Low

CloudFront compression ~65-80% Low

Delete orphaned EBS volumes 100% Low

Stop dev instances off-hours ~65% Medium

Delete duplicate CloudTrail trails 100% Low

Delete idle NAT Gateways 100% Low

Disable unused FSR 100% Low

1. Elastic Block Store (EBS)

☐ Migrate GP2 volumes to GP3

~20% savings on storage costs

How to spot: Run aws ec2 describe-volumes --filters Name=volume-type,Values=gp2 — any results are costing

you 20% more than necessary.

☐ Migrate io1/io2 volumes to GP3 where IOPS allow

~60-87% savings per volume

How to spot: Check CloudWatch for actual IOPS usage. If peak IOPS < 16,000, GP3 can handle it at a fraction of the

cost.

☐ Delete unattached EBS volumes

100% of orphaned volume costs

How to spot: Filter volumes by "available" state in the console. These are attached to nothing and burning money.

☐ Delete old snapshots (90+ days)

$0.05/GB-month

How to spot: Sort snapshots by creation date. Anything older than your retention policy is waste.

☐ Disable unused Fast Snapshot Restore (FSR)

Hidden hourly charges

How to spot: Check each snapshot's FSR settings. If you're not using instant restores, you're paying for nothing.

2. Simple Storage Service (S3)

☐ Enable S3 Intelligent-Tiering on buckets with unknown access patterns

Up to 65% savings on infrequently accessed data

How to spot: Use S3 Storage Lens to identify buckets with mixed or declining access patterns.

☐ Set lifecycle policies to expire old object versions

Varies by versioning depth

How to spot: Check bucket versioning settings. Old versions pile up silently — we've seen buckets where versions

were 10x the size of current objects.

☐ Delete incomplete multipart uploads

100% of partial upload costs

How to spot: Use S3 Storage Lens or set a lifecycle rule to auto-expire incomplete uploads after 7 days.

3. Elastic Compute Cloud (EC2)

☐ Right-size underutilized instances

~20-50% savings

How to spot: Check CloudWatch CPU and memory metrics. Consistent utilization below 40% means you're paying for

capacity you don't use.

☐ Use Graviton (ARM) instances where compatible

Up to ~40% better price-performance

How to spot: Any Linux workload without x86-specific dependencies is a candidate. Start with non-production.

☐ Migrate previous-gen instances to current-gen

~10-30% better performance/cost

How to spot: Look for instance types like m4, c4, r4, t2. Current gen costs less and performs better.

☐ Stop idle dev/test instances off-hours

~65% savings

How to spot: Tag instances by environment. If CPU is near-zero evenings and weekends, automate stop/start

schedules.

4. Networking & Content Delivery

☐ Enable CloudFront compression for text assets

~65-80% bandwidth reduction

How to spot: Check your CloudFront distribution settings. If "Compress Objects Automatically" is off, you're

transferring bloated files.

☐ Set up VPC endpoints for AWS service traffic

Eliminates NAT Gateway data processing fees

How to spot: High NAT Gateway charges in Cost Explorer. S3 and DynamoDB endpoints are free and cut transfer costs

immediately.

☐ Remove idle NAT Gateways

100% of idle NAT costs

How to spot: Check NAT Gateway metrics for BytesOutToDestination. Near-zero over 30+ days means it's unused.

☐ Delete unused Elastic IPs

$3.60/month per idle EIP

How to spot: Filter EIPs by association status. Unassociated = wasted money.

☐ Delete idle load balancers

$16-22/month base cost per ALB/NLB

How to spot: Check RequestCount and ActiveConnectionCount. Zero traffic for 30+ days = candidate for deletion.

5. Database Services

☐ Migrate RDS io1/io2 storage to GP3

~60-87% storage cost reduction

How to spot: Same logic as EBS, check actual IOPS in CloudWatch vs. provisioned.

☐ Right-size over-provisioned RDS instances

~20-50% savings

How to spot: Check CPU and FreeableMemory in CloudWatch. Consistent low utilization means you're paying for

unused capacity.

☐ Delete idle RDS/Aurora clusters

100% of cluster costs

How to spot: Check DatabaseConnections metric. Zero connections over weeks means a forgotten database burning

money.

☐ Enable DynamoDB Standard-IA for cold tables

~60% storage savings

How to spot: Check table metrics for read/write patterns. Tables accessed less than 20% of the time are candidates.

☐ Switch to Aurora I/O-Optimized for I/O-heavy workloads

~30-40% cost reduction

How to spot: If I/O charges exceed 25% of your Aurora bill, I/O-Optimized pricing likely saves money.

6. Lambda & Serverless

☐ Right-size Lambda memory allocation

~15-40% runtime cost reduction

How to spot: Use AWS Lambda Power Tuning tool. Many functions run faster AND cheaper with different memory

settings.

☐ Use Graviton (ARM) for Lambda functions

Up to ~34% better price-performance

How to spot: Any function without x86-specific dependencies. Change architecture in function config — one setting.

☐ Remove unused Provisioned Concurrency

$0.015/GB-hour when idle

How to spot: Check ProvisionedConcurrencyUtilization metric. Low utilization means you're paying for warm capacity

you don't use.

7. Monitoring & Governance

☐ Delete duplicate CloudTrail trails

100% of duplicate trail costs

How to spot: List trails across all regions. Multiple trails logging the same events to different buckets is common and

wasteful.

☐ Optimize CloudWatch log retention

Varies by volume

How to spot: Check log group retention settings. The default is "never expire" but most logs lose value after 30-90

days.

☐ Delete unused CloudWatch alarms

$0.10/alarm/month

How to spot: Check alarm state history. Alarms that haven't changed state in months are monitoring nothing useful.

8. Commonly Overlooked Services

☐ Delete idle OpenSearch clusters

100% of idle cluster costs

How to spot: Check indexing rate and search rate metrics. Near-zero activity over weeks means an unused cluster.

☐ Stop idle SageMaker notebooks

100% of idle notebook costs

How to spot: Notebooks running for days with no kernel activity. These are often forgotten after experiments.

☐ Delete idle QuickSight users

$18-24/user/month

How to spot: Check user activity in QuickSight admin. Admin Users who haven't logged in for 30+ days are wasting

licenses.

Implementation Strategy

Start with quick wins — GP2 to GP3, enable compression, delete orphaned resources

Build monitoring — Set up CloudYali Cost Reports and budgets before making changes

Tag everything — Good tagging enables good cost allocation and easier optimization

Automate where possible — Scheduled instance stops, lifecycle policies, automated rightsizing

Review regularly — Cloud environments change; make cost review a monthly habit

The Bottom Line

These 30+ optimizations can reduce your AWS bill by 15-60%, depending on your current state. Most

organizations achieve 20-30% savings within the first few months of focused optimization efforts.

Get more cloud cost optimization tips at cloudyali.io/blogs

© 2025 CloudYali. All rights reserved.

1.

2.

3.

4.

5.

https://cloudyali.io/blogs

	AWS Cost Optimization Checklist
	Quick Wins: Start Here
	1. Elastic Block Store (EBS)
	Migrate GP2 volumes to GP3
	Migrate io1/io2 volumes to GP3 where IOPS allow
	Delete unattached EBS volumes
	Delete old snapshots (90+ days)
	Disable unused Fast Snapshot Restore (FSR)

	2. Simple Storage Service (S3)
	Enable S3 Intelligent-Tiering on buckets with unknown access patterns
	Set lifecycle policies to expire old object versions
	Delete incomplete multipart uploads

	3. Elastic Compute Cloud (EC2)
	Right-size underutilized instances
	Use Graviton (ARM) instances where compatible
	Migrate previous-gen instances to current-gen
	Stop idle dev/test instances off-hours

	4. Networking & Content Delivery
	Enable CloudFront compression for text assets
	Set up VPC endpoints for AWS service traffic
	Remove idle NAT Gateways
	Delete unused Elastic IPs
	Delete idle load balancers

	5. Database Services
	Migrate RDS io1/io2 storage to GP3
	Right-size over-provisioned RDS instances
	Delete idle RDS/Aurora clusters
	Enable DynamoDB Standard-IA for cold tables
	Switch to Aurora I/O-Optimized for I/O-heavy workloads

	6. Lambda & Serverless
	Right-size Lambda memory allocation
	Use Graviton (ARM) for Lambda functions
	Remove unused Provisioned Concurrency

	7. Monitoring & Governance
	Delete duplicate CloudTrail trails
	Optimize CloudWatch log retention
	Delete unused CloudWatch alarms

	8. Commonly Overlooked Services
	Delete idle OpenSearch clusters
	Stop idle SageMaker notebooks
	Delete idle QuickSight users

	Implementation Strategy
	The Bottom Line

